
Implementing the Cortex-M0 DesignStart Processor
in a Low-end FPGA

Pedro Ignacio Martos & Fabricio Baglivo
Laboratorio de Sistemas Embebidos

Facultad de Ingeniería – Universidad de Buenos Aires
Buenos Aires, Argentina

pmartos@fi.uba.ar / baglivofabricio@gmail.com

Abstract— The Cortex™-M processor family from ARM is
optimized for cost and power sensitive MCU and mixed signal
devices, available as soft cores and hard cells in FPGAs. There
are Cortex-M solutions in FPGAs from Altera (the Cortex-M1 is
delivered as a soft core) and Actel (the Cortex-M1 is delivered as
a soft core and the Cortex-M3 as a hardened block); however,
there are currently no Cortex-M solutions from Xilinx.
Moreover, ARM has recently launched a low cost, reduced
version of the Cortex-M0 processor (Cortex-M0 DesignStart™),
which could be synthesized into a FPGA or used for silicon
implementations. In this article we show the results of the
implementation of the Cortex-M0 DesignStart processor in a low-
end FPGA from Xilinx, extending the implementations available
for Cortex-M processors in FPGA.

Keywords- Cortex-M0, FPGA

I. INTRODUCTION

A. ARM Processor Families
In the ARM processor line, the Cortex family, shown in
Figure 1, consist of cores ranging from low cost
microcontroller solutions to high end processors capable of
supporting large, complex operating systems. Older processors
include the ARM7, ARM9 and ARM11 families, and the
specialized series SecurCore™ for security and cryptographic
applications.

Figure 1. Performance vs capabilities in the ARM processor families

The Cortex-M0 processor is the lowest member of the Cortex-
M family. This family allows different tradeoffs between cost,
design simplicity, power, performance and computation power
in an embedded processor.
The Cortex-M0 processor aims to get low power and a small
area to be competitive against high-end 8-bit processors and
16-bit processors, but it maintains code compatibility with the
other members of the family (shown in Figure 2), like the
Cortex-M3 processor. The smallest Cortex-M0 processor has a
power rating of 84μW/MHz and has a gate count of
approximately 12,000. As a reference, a classic processor like
the i8051 has a gate count around 10,000 gates.

Figure 2. Comparision of different Cortex-M processors

B. Cortex-M0 Architecture
The Cortex-M0 processor, shown in Figure 3 is based on the
ARMv6-M architecture (Von Neumann) with a 3-stage
pipeline. It archieves a Dhrystone mark of 0.9DMIPS/MHz, It
can be implemented with up to 32 maskable interrupts, plus
one non-mascable interrupt using a Nested Vectored Interrupt
Controller (NVIC) with a fixed latency of 16 machine cycles
[1].

Figure 3. Cortex-M0 block diagram

The Cortex-M0 processor implements a reduced version of the
Advanced Microcontroller Bus Architecture (AMBA®), the
AMBA-Lite bus (shown in Figures 4 to 6), to connect to
different peripherals. This bus was designed as a high
performance bus for fast transactions between processors and
peripherals needing a wide bandwidth or high throughput. The
Cortex-M0 is, in general, the only master device, and all the
peripherals are slaves over the bus; however, the bus
specification allows for a multimaster system. The most
important features of the bus are: single or burst transfers;
single cycle transfers; tri-state buffers; and variable bus width
configurations (32, 64, 128, 256,512 or 1024 bits) [2].

Figure 4. AMBA-Lite system

Figure 5. AMBA-Lite master signals

Figure 6. AMBA-Lite slave signals

C. Cortex-M0 DesignStart Processor
The Cortex-M0 DesignStart processor (M0DS) is a fixed
configuration of the Cortex-M0 Processor (M0S). The M0DS
processor was launched on August 4th, 2010. The main
differences between the two processors are: the M0S
processor has master and slave signals in its AMBA-Lite bus,
where the M0DS processor has only master signals. The M0S
can be configured with a fast single-cycle multiplier or with a
slower 32 cycles multiplier, the M0DS only has the slower
one. The M0S processor can be configured with up to 32
interrupt sources, the M0DS has 16 fixed interrupt sources.
The M0S can be configured with a wake-up interrupt

controller, architectural clock gating, a debug port (up to 4
hardware breakpoints, a serial or JTAG interface) and a 24 bit
system timer. The M0DS processor does not have these
features [3][4][5].

II. IMPLEMENTATION

A. Hardware and Software
We use a mature and low-end FPGA for our implementation:
the Xilinx S3E500-4. Its features are: 500K gates, 10500 logic
cells (1100 configurable logic blocks–CLB or 4600 slices), 20
hardware multipliers, 360Kbits of block RAM, 73Kbits of
distributed RAM, 4 digital clock managers (DCMs) and a
maximum operating frequency of 300 MHz [6].
We used a starter board from Digilent, the Nexys2, shown in
Figure 7. It has an S3E500 FPGA, a USB-based programming
and communications interface, 16Mbytes of PSDRAM,
16Mbytes of flash ROM plus a configuration PROM, a 50
MHz oscillator, 8 LEDs, 4 seven segment displays, 4 pulse
buttons and 8 switchs. There are 60 I/O pins available from
the FPGA. [7].

Figure 7. Nexys2 board block diagram

With this board and a plugin (Adept) it is posible to use Xilinx
tools to work with the boad (Impact, ChipScope Pro, xmd,
etc.), so it is possible to program and to see its internal state
using standard tools and scripts.
The FPGA toolchain was ISE 12.2. The software toolchain
was the ARM Microcontroller Development Kit from Keil™ .

B. Cortex-M0 DesignStart Kit
This kit has two parts: the processor, implemented in two
synthesizable Verilog files, and a testbench with a basic
program. The documentation is in .pdf format, which includes
the release notes. [3].
The testbench, shown in Figure 8, has a non- synthesizable
Verilog module that instantiates the Cortex-M0 processor
connected to a memory loaded with the basic program. Other
items in the testbench include the C source code of the basic
program, the binary image of the program, and a makefile to
build the image from the C source code.

Figure 8. Testbench block diagram

C. Implementation Working Plan
We planned to do the following activities: a) verify that the
processor could be synthesized in the chosen FPGA; b) create
a project in ISE with the testbench and check it by functional
simulation with ISIM; c) generate the image file from the C
source code using the makefile; d) verify the binary file
generated using the testbench project; e) generate a
synthesizable testbench project in ISE. f) generate a program
that can interact with the hardware on the board and verify it
with ARM MDK debugger, g) integrate the image generated
in the synthesizable testbench and verify it with ISIM. h)
synthesize the project and load it in the board to check the
correct implementation, and i) verify the system with
ChipScope Pro.

D. Implementation Results
Item (a) was done successfully. It showed that the Cortex-M0
implementation used aproximately. 50% of the fabric of the
FPGA. During the implementation of item (b), when we
simulated the testbench, we found that the processor entered in
a blocked state before entering the main routine. We decided
to move on to item (c) to have a software simulation of the
program.

When we studied the makefile in detail for use with the ARM
MDK (as stated in the release notes [3]), we realized that it
was not consistent. The tools for compiling and linking were
from ARM MDK (armcc and armlink), but the calling
parameters weren’t for those tools. Looking for information in
other toolchain providers, we found that the parameters were
made for the IAR Embedded Workbench toolchain (iccarm
and ilinkarm). So the makefile was made from parts of
different makefiles for different toolchains, rendering it
useless for generating the image file from the C source code.

With these findings, we decided to generate a new project in
ARM MDK using only the C source code, get an image file,
and use this new image file to see if the processor locks in the
funcional simulation on ISIM. We found that the processor
was still blocked before the main routine, but having a
software simulation, we could compare the software
simulation on ARM MDK against the functional simulation on
ISIM. Checking that, we saw that the software simulation

worked as expected, but the ISIM simulation showed strange
values over the data bus on data fetches from memory. Further
inspection of the testbench showed that the problem was in the
memory initialization: the binary image was read using
Verilog’s $fread function, expecting to read four bytes in each
read, filling one 32-bit word of the memory. Xilinx’s
implementation of this function makes one-byte reads in each
call to the function. So we modified the testbench to make
four reads before filling the 32-bit word of the memory. Doing
so solved the problem and the software simulation was the
same as the functional simulation.

So, we continued with items (e), the synthesizable system, and
(f), a program using hardware resources. We started with the
program. Since we did not want to add complexity to the
project by generating an AMBA-Lite slave device connected
to the processor, we decided to make a program that loads two
different constant values fetched from memory into an internal
register on the processor. Those values should appear on the
data bus, where it could be possible to see and catch them. The
program was tested in the ARM MDK simulator, shown in
Figure 9, to see the memory fetches to get the values. Doing
that, the program was loaded in the testbench and with an
ISIM functional simulation we could see the values on the
data bus.

Figure 9. ARM MDK simulator showing the memory fetch

Figure 10. ISIM simulator showing the memory fetch

With a successfull simulation, we synthesized the system. The
system has these parts: a) the processor, with the Cortex-M0

DesignStart Verilog code; b) a reset synchronizer, using a
counter, where we generated a reset signal synchronized with
the system clock; c) memory implemented with block RAM
preloaded with the image file; d) a clock, which is the 10 MHz
system clock generated with a DCM from the 50 MHz
oscillator; and e) a bus signal detector, which detects the
constant values fetched from memory on the data read bus. It
commands a LED on the board to switch on when one value is
present on the bus, and switch off when the other constant
value appears on the data read bus. It was necessary to make a
program to convert the binary data file from ARM MDK
(.bin) to the memory initialization values in CoreGen (.COE).
The system was simulated with ISIM, in particular the bus
signal detector, to verify that the constant values were detected
when they were on the data read bus.

Finally , the system was synthesized and loaded on the board.
We then verified that we saw the constant values on the data
read bus during the memory fetches with ChipScope Pro; and
visually, we saw the LED toggling at programmed intervals,
so we considered the implementation validated.

III. RESULTS
The most important result is that it is possible to implement
this processor in a low-end FPGA, so it can be used in low-
cost/low-resources embedded systems in an FPGA. At the
same time, the FPGA technologies where Cortex-M
processors can be used was expanded. Now it is possible to
implement Cortex-M processors in the three main providers of
FPGA technology (Xilinx, Altera and Actel), so Cortex-M
processors can be a good choice when FPGA portability is
needed. Figure 11 shows our implementation statistics.

Figure 11. FPGA usage with the implementation

As a note, the high block Ram usage is not because of the
system. Memory is used by ChipScope Pro hardware for
sample storage. So the block Ram usage in the system is
mainly dependent of the size of the code. For temporal results,
the synthesizer showed a maximum working frequency of
around 40MHz, but this value could be higher because we did
not put any time or area constraints in the design.

Another feature of this processor is that it is possible to view
the internal registers, so it could be used in educational
environments to show the similarities between the software
simulation, the hardware simulation and the real
implementation at the internal registers level.
Another tool that would be usefull is a full testbench that
generates a binary image from the C source code. That was
not possible with the elements in the delivered testbench, so it
was necessary to do other activities that were not planned.

As a final conclusion, this processor adds to the processors
that could be implemented in Xilinx FPGAs, with the added
value that can be used in other FPGA architectures, too. For a
future work, we will create an implementation of the AMBA-
Lite bus and a set of peripherals (UART, I2C, SPI, etc) that
could be connected to this bus to expand the processor’s
capacity. This model could become a good choice to develop
embedded systems using Xilinx FPGAs, with the capability to
execute embedded Linux.

IV. REFERENCES
[1] ARM Ltd, “ARM DDI 0419C ARMv6-M Architecture Reference

Manual”, September 2010.
[2] ARM Ltd, “ARM IHI 0033A AMBA 3 AHB-Lite Protocol V.1.0

Specification”, June 2006.
[3] ARM Ltd. “AT510-DC-80001-r0p0-00-rel0 ARM Cortex-M0

DesignStart Release Note”, August 2010.
[4] ARM Ltd. “ARM DDI 0432C Cortex-M0 Revision r0p0 Technical

Reference Manual”, November 2009.
[5] ARM Ltd, “ARM DUI 0497A Cortex-M0 Devices Generic User

Guide”, October 2009.
[6] Xilinx, “DS312 Spartan-3E FPGA Family: Datasheet”, August 2009.
[7] Digilent, “Digilent Nexys2 Board Reference Manual”, June 2008

V. ACKNOWLEDGEMENTS
To the ARM University Program, including William Hohl and Joe Bungo, as
well as Fiona Cole from Digilent, and the people at the Xilinx University
Program (XUP) for their support and cooperation.

VI. TRADEMARKS AND COPYRIGHTS
The information about ARM processor families was mainly extracted from
ARM Ltd web site (www.arm.com), as published on October, 2010.

ARM, Cortex, Cortex-M, AMBA, AMBA-Lite, and other designated brands
included herein are trademarks of ARM Limited.

Xilinx, Spartan, ISE, and other designated brands included herein are
trademarks of Xilinx Inc.

Digilent, Nexys2, Adept, and other designated brands included herein are
trademarks of Digilent Inc.

All other trademarks are the property of their respective owners.

Figures 1 through 6 and Figure 8 are copyright ARM Ltd. Reproduced with
permission.

Figure 7 is copyright Digilent Inc. Reproduced with permission.

