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Abstract— The Cortex™-M processor family from ARM is 
optimized for cost and power sensitive MCU and mixed signal 
devices, available as soft cores and hard cells in FPGAs. There 
are Cortex-M solutions in FPGAs from Altera (the Cortex-M1 is 
delivered as a soft core) and Actel (the Cortex-M1 is delivered as 
a soft core and the Cortex-M3 as a hardened block); however,  
there are currently no Cortex-M solutions from Xilinx. 
Moreover, ARM has recently launched a low cost, reduced 
version of the Cortex-M0 processor (Cortex-M0 DesignStart™), 
which could be synthesized into a FPGA or used for silicon 
implementations. In this article we show the results of the 
implementation of the Cortex-M0 DesignStart processor in a low-
end FPGA from Xilinx, extending the implementations available 
for Cortex-M processors in FPGA. 
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I.  INTRODUCTION 

A. ARM Processor Families 
In the ARM processor line, the Cortex family, shown in 
Figure 1, consist of cores ranging from low cost 
microcontroller solutions to high end processors capable of 
supporting large, complex operating systems. Older processors 
include the ARM7, ARM9 and ARM11 families, and the 
specialized series SecurCore™ for security and cryptographic 
applications. 
 

 

Figure 1.  Performance vs capabilities in the ARM processor families 

The Cortex-M0 processor is the lowest member of the Cortex-
M family. This family allows different tradeoffs between cost, 
design simplicity, power, performance and computation power 
in an embedded processor. 
The Cortex-M0 processor aims to get low power and a small 
area to be competitive against high-end 8-bit processors and 
16-bit processors, but it maintains code compatibility with the 
other members of the family (shown in Figure 2), like the 
Cortex-M3 processor. The smallest Cortex-M0 processor has a 
power rating of 84μW/MHz and has a gate count of 
approximately 12,000. As a reference, a classic processor like 
the i8051 has a gate count around 10,000 gates. 

 

Figure 2.  Comparision of different Cortex-M processors 

B.  Cortex-M0 Architecture 
The Cortex-M0 processor, shown in Figure 3 is based on the 
ARMv6-M architecture (Von Neumann) with a 3-stage 
pipeline. It archieves a Dhrystone mark of 0.9DMIPS/MHz, It 
can be implemented with up to 32 maskable interrupts, plus 
one non-mascable interrupt using a Nested Vectored Interrupt 
Controller (NVIC) with a fixed latency of 16 machine cycles 
[1]. 

 

Figure 3.  Cortex-M0 block diagram 



The Cortex-M0 processor implements a reduced version of the 
Advanced Microcontroller Bus Architecture (AMBA®), the 
AMBA-Lite bus (shown in Figures 4 to 6), to connect to 
different peripherals. This bus was designed as a high 
performance bus for fast transactions between processors and 
peripherals needing a wide bandwidth or high throughput. The 
Cortex-M0 is, in general, the only master device, and all the 
peripherals are slaves over the bus; however, the bus 
specification allows for a multimaster system. The most 
important features of the bus are: single or burst transfers; 
single cycle transfers; tri-state buffers; and variable bus width 
configurations (32, 64, 128, 256,512 or 1024 bits) [2]. 

 

Figure 4.  AMBA-Lite system 

 

Figure 5.  AMBA-Lite master signals 

 

Figure 6.  AMBA-Lite slave signals 

C.  Cortex-M0 DesignStart Processor 
The Cortex-M0 DesignStart processor (M0DS) is a fixed 
configuration of the Cortex-M0 Processor (M0S). The M0DS 
processor was launched on August 4th, 2010. The main 
differences between the two processors are: the M0S 
processor has master and slave signals in its AMBA-Lite bus, 
where the M0DS processor has only master signals. The M0S 
can be configured with a fast single-cycle multiplier or with a 
slower 32 cycles multiplier, the M0DS only has the slower 
one. The M0S processor can be configured with up to 32 
interrupt sources, the M0DS has 16 fixed interrupt sources. 
The M0S can be configured with a wake-up interrupt 

controller, architectural clock gating, a debug port (up to 4 
hardware breakpoints, a serial or JTAG interface) and a 24 bit 
system timer. The M0DS processor does not have these 
features [3][4][5]. 

II. IMPLEMENTATION 

A. Hardware and Software 
We use a mature and low-end FPGA for our implementation: 
the Xilinx S3E500-4. Its features are: 500K gates, 10500 logic 
cells (1100 configurable logic blocks–CLB or 4600 slices), 20 
hardware multipliers, 360Kbits of block RAM, 73Kbits of 
distributed RAM, 4 digital clock managers (DCMs) and a 
maximum operating frequency of 300 MHz [6]. 
We used a starter board from Digilent, the Nexys2, shown in 
Figure 7. It has an S3E500 FPGA, a USB-based programming 
and communications interface, 16Mbytes of PSDRAM, 
16Mbytes of flash ROM plus a configuration PROM, a 50 
MHz oscillator, 8 LEDs, 4 seven segment displays, 4 pulse 
buttons and 8 switchs. There are 60 I/O pins available from 
the FPGA. [7]. 
 

 

Figure 7.  Nexys2 board block diagram 

With this board and a plugin (Adept) it is posible to use Xilinx 
tools to work with the boad (Impact, ChipScope Pro, xmd, 
etc.), so it is possible to program and to see its internal state 
using standard tools and scripts. 
The FPGA toolchain was ISE 12.2. The software toolchain 
was the ARM Microcontroller Development Kit from Keil™ . 

B. Cortex-M0 DesignStart Kit 
This kit has two parts: the processor, implemented in two 
synthesizable Verilog files, and a testbench with a basic 
program. The documentation is in .pdf format, which includes 
the release notes. [3]. 
The testbench, shown in Figure 8, has a non- synthesizable 
Verilog module that instantiates the Cortex-M0 processor 
connected to a memory loaded with the basic program. Other 
items in the testbench include the C source code of the basic 
program, the binary image of the program, and a makefile to 
build the image from the C source code. 
 



 

Figure 8.  Testbench block diagram 

C. Implementation Working Plan 
We planned to do the following activities: a) verify that the 
processor could be synthesized in the chosen FPGA; b) create 
a project in ISE with the testbench and check it by functional 
simulation with ISIM; c) generate the image file from the C 
source code using the makefile; d) verify the binary file 
generated using the testbench project; e) generate a 
synthesizable testbench project in ISE. f) generate a program 
that can interact with the hardware on the board and verify it 
with ARM MDK debugger, g) integrate the image generated 
in the synthesizable testbench and verify it with ISIM. h) 
synthesize the project and load it in the board to check the 
correct implementation, and i) verify the system with 
ChipScope Pro. 

D. Implementation Results 
Item (a) was done successfully. It showed that the Cortex-M0 
implementation used aproximately. 50% of the fabric of the 
FPGA. During the implementation of item (b), when we 
simulated the testbench, we found that the processor entered in 
a blocked state before entering the main routine. We decided 
to move on to item (c) to have a software simulation of the 
program. 
 
When we studied the makefile in detail for use with the ARM 
MDK (as stated in the release notes [3]), we realized that it 
was not consistent. The tools for compiling and linking were 
from ARM MDK (armcc and armlink), but the calling 
parameters weren’t for those tools. Looking for information in 
other toolchain providers, we found that the parameters were 
made for the IAR Embedded Workbench toolchain (iccarm 
and ilinkarm). So the makefile was made from parts of 
different makefiles for different toolchains, rendering it 
useless for generating the image file from the C source code. 
 
With these findings, we decided to generate a new project in 
ARM MDK using only the C source code, get an image file, 
and use this new image file to see if the processor locks in the 
funcional simulation on ISIM. We found that the processor 
was still blocked before the main routine, but having a 
software simulation, we could compare the software 
simulation on ARM MDK against the functional simulation on 
ISIM. Checking that, we saw that the software simulation 

worked as expected, but the ISIM simulation showed strange 
values over the data bus on data fetches from memory. Further 
inspection of the testbench showed that the problem was in the 
memory initialization: the binary image was read using 
Verilog’s $fread function, expecting to read four bytes in each 
read, filling one 32-bit word of the memory. Xilinx’s 
implementation of this function makes one-byte reads in each 
call to the function. So we modified the testbench to make 
four reads before filling the 32-bit word of the memory. Doing 
so solved the problem and the software simulation was the 
same as the functional simulation. 
 
So, we continued with items (e), the synthesizable system, and 
(f), a program using hardware resources. We started with the 
program. Since we did not want to add complexity to the 
project by generating an AMBA-Lite slave device connected 
to the processor, we decided to make a program that loads two 
different constant values fetched from memory into an internal 
register on the processor. Those values should appear on the 
data bus, where it could be possible to see and catch them. The 
program was tested in the ARM MDK simulator, shown in 
Figure 9, to see the memory fetches to get the values. Doing 
that, the program was loaded in the testbench and with an 
ISIM functional simulation we could see the values on the 
data bus. 
 

 

Figure 9.  ARM MDK simulator showing the memory fetch 

 

Figure 10.  ISIM simulator showing the memory fetch 

With a successfull simulation, we synthesized the system. The 
system has these parts: a) the processor, with the Cortex-M0 



DesignStart Verilog code; b) a reset synchronizer, using a 
counter, where we generated a reset signal synchronized with 
the system clock; c) memory implemented with block RAM 
preloaded with the image file; d) a clock, which is the 10 MHz 
system clock generated with a DCM from the 50 MHz 
oscillator; and e) a bus signal detector, which detects the 
constant values fetched from memory on the data read bus. It  
commands a LED on the board to switch on when one value is 
present on the bus, and switch off when the other constant 
value appears on the data read bus. It was necessary to make a 
program to convert the binary data file from ARM MDK 
(.bin) to the memory initialization values in CoreGen (.COE). 
The system was simulated with ISIM, in particular the bus 
signal detector, to verify that the constant values were detected 
when they were on the data read bus. 
 
Finally , the system was synthesized and loaded on the board. 
We then verified that we saw the constant values on the data 
read bus during the memory fetches with ChipScope Pro; and 
visually, we saw the LED toggling at programmed intervals, 
so we considered the implementation validated. 

III. RESULTS 
The most important result is that it is possible to implement 
this processor in a low-end FPGA, so it can be used in low-
cost/low-resources embedded systems in an FPGA. At the 
same time, the FPGA technologies where Cortex-M 
processors can be used was expanded. Now it is possible to 
implement Cortex-M processors in the three main providers of 
FPGA technology (Xilinx, Altera and Actel), so Cortex-M 
processors can be a good choice when FPGA portability is 
needed. Figure 11 shows our implementation statistics. 
 

 

Figure 11.  FPGA usage with the implementation 

As a note, the high block Ram usage is not because of the 
system. Memory is used by ChipScope Pro hardware for 
sample storage. So the block Ram usage in the system is 
mainly dependent of the size of the code. For temporal results, 
the synthesizer showed a maximum working frequency of 
around 40MHz, but this value could be higher because we did 
not put any time or area constraints in the design.  
 

Another feature of this processor is that it is possible to view 
the internal registers, so it could be used in educational 
environments to show the similarities between the software 
simulation, the hardware simulation and the real 
implementation at the internal registers level. 
Another tool that would be usefull is a full testbench that 
generates a binary image from the C source code. That was 
not possible with the elements in the delivered testbench, so it 
was necessary to do other activities that were not planned. 
 
As a final conclusion, this processor adds to the processors 
that could be implemented in Xilinx FPGAs, with the added 
value that can be used in other FPGA architectures, too. For a 
future work, we will create an implementation of the AMBA-
Lite bus and a set of peripherals (UART, I2C, SPI, etc) that 
could be connected to this bus to expand the processor’s 
capacity. This model could become a good choice to develop 
embedded systems using Xilinx FPGAs, with the capability to 
execute embedded Linux. 
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